TRIGONOMETRY

1 Find all values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
\begin{equation*}
\tan ^{2} x-\sec x=1 \tag{6}
\end{equation*}
$$

$2 \quad$ a Express $2 \cos x^{\circ}+5 \sin x^{\circ}$ in the form $R \cos (x-\alpha)^{\circ}$, where $R>0$ and $0<\alpha<90$.
Give the values of R and α to 3 significant figures.
b Solve the equation

$$
\begin{equation*}
2 \cos x^{\circ}+5 \cos x^{\circ}=3 \tag{4}
\end{equation*}
$$

for values of x in the interval $0 \leq x \leq 360$, giving your answers to 1 decimal place.
3 a Solve the equation

$$
\begin{equation*}
\pi-6 \arctan 2 x=0 \tag{4}
\end{equation*}
$$

giving your answer in the form $k \sqrt{3}$.
b Find the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
\begin{equation*}
2 \sin 2 x=3 \cos x \tag{6}
\end{equation*}
$$

giving your answers to an appropriate degree of accuracy.

4 a Use the identities for $\sin (A+B)$ and $\sin (A-B)$ to prove that

$$
\begin{equation*}
\sin P-\sin Q \equiv 2 \cos \frac{P+Q}{2} \sin \frac{P-Q}{2} . \tag{4}
\end{equation*}
$$

b Hence, or otherwise, find the values of x in the interval $0 \leq x \leq 180^{\circ}$ for which

$$
\begin{equation*}
\sin 4 x=\sin 2 x \tag{6}
\end{equation*}
$$

5 a Prove the identity

$$
\begin{equation*}
(2 \sin \theta-\operatorname{cosec} \theta)^{2} \equiv \operatorname{cosec}^{2} \theta-4 \cos ^{2} \theta, \quad \theta \neq n \pi, \quad n \in \mathbb{Z} \tag{3}
\end{equation*}
$$

b i Sketch the curve $y=3+2 \sec x$ for x in the interval $0 \leq x \leq 2 \pi$.
ii Write down the coordinates of the point where the curve meets the y-axis.
iii Find the coordinates of the points where the curve crosses the x-axis in this interval.
$6 \quad$ a Find the exact values of R and α, where $R>0$ and $0<\alpha<\frac{\pi}{2}$, for which

$$
\begin{equation*}
\cos x-\sin x \equiv R \cos (x+\alpha) \tag{3}
\end{equation*}
$$

b Using the identity

$$
\cos X+\cos Y \equiv 2 \cos \frac{X+Y}{2} \cos \frac{X-Y}{2}
$$

or otherwise, find in terms of π the values of x in the interval $[0,2 \pi]$ for which

$$
\begin{equation*}
\cos x+\sqrt{2} \cos \left(3 x-\frac{\pi}{4}\right)=\sin x \tag{7}
\end{equation*}
$$

7 a Prove the identity

$$
\begin{equation*}
\cot 2 x+\operatorname{cosec} 2 x \equiv \cot x, \quad x \neq \frac{n \pi}{2}, \quad n \in \mathbb{Z} \tag{4}
\end{equation*}
$$

b Hence, for x in the interval $0 \leq x \leq 2 \pi$, solve the equation

$$
\begin{equation*}
\cot 2 x+\operatorname{cosec} 2 x=6-\cot ^{2} x \tag{6}
\end{equation*}
$$

giving your answers correct to 2 decimal places.

8 a Prove that for all real values of x

$$
\begin{equation*}
\cos (x+30)^{\circ}+\sin x^{\circ} \equiv \cos (x-30)^{\circ} \tag{4}
\end{equation*}
$$

b Hence, find the exact value of $\cos 75^{\circ}-\cos 15^{\circ}$, giving your answer in the form $k \sqrt{2}$. (3)
c Solve the equation

$$
\begin{equation*}
3 \cos (x+30)^{\circ}+\sin x^{\circ}=3 \cos (x-30)^{\circ}+1 \tag{4}
\end{equation*}
$$

for x in the interval $-180 \leq x \leq 180$.

9

The diagram shows the curve $y=\mathrm{f}(x)$ where

$$
\mathrm{f}(x) \equiv a+b \sin x^{\circ}+c \cos x^{\circ}, x \in \mathbb{R}, 0 \leq x \leq 360
$$

The curve has turning points with coordinates $(60,5)$ and $(240,1)$ as shown.
a State, with a reason, the value of the constant a.
b Find the values of k and α, where $k>0$ and $0<\alpha<90$, such that

$$
\begin{equation*}
\mathrm{f}(x)=a+k \sin (x+\alpha)^{\circ} \tag{3}
\end{equation*}
$$

c Hence, or otherwise, find the exact values of the constants b and c.
10 a Prove the identity

$$
\begin{equation*}
\frac{1-\cos x}{1+\cos x} \equiv \tan ^{2} \frac{x}{2}, \quad x \neq(2 n+1) \pi, n \in \mathbb{Z} \tag{4}
\end{equation*}
$$

b Use the identity in part a to
i find the value of $\tan ^{2} \frac{\pi}{12}$ in the form $a+b \sqrt{3}$, where a and b are integers,
ii solve the equation

$$
\frac{1-\cos x}{1+\cos x}=1-\sec \frac{x}{2}
$$

for x in the interval $0 \leq x \leq 2 \pi$, giving your answers in terms of π.
11 a Prove that there are no real values of x for which

$$
\begin{equation*}
6 \cot ^{2} x-\operatorname{cosec} x+5=0 \tag{4}
\end{equation*}
$$

b Find the values of y in the interval $0 \leq y \leq 180^{\circ}$ for which

$$
\begin{equation*}
\cos 5 y=\cos y \tag{6}
\end{equation*}
$$

12 a Use the identities for $\cos (A+B)$ and $\cos (A-B)$ to prove that

$$
\begin{equation*}
\sin A \sin B \equiv \frac{1}{2}[\cos (A-B)-\cos (A+B)] \tag{2}
\end{equation*}
$$

b Hence, or otherwise, find the values of x in the interval $0 \leq x \leq \pi$ for which

$$
\begin{equation*}
4 \sin \left(x+\frac{\pi}{3}\right)=\operatorname{cosec}\left(x-\frac{\pi}{6}\right) \tag{7}
\end{equation*}
$$

giving your answers as exact multiples of π.

